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1 Introduction

Large data sets of points in high-dimensional spaces arise in many fields, from machine learning and computer
vision to scientific simulations. Often, we wish to summarize or compress a massive point cloud with a much
smaller representative subset of points, while preserving the essential characteristics of the full set. This
representative sampling makes it feasible to perform downstream tasks (such as clustering, visualization, or
computation of expensive algorithms) more efficiently, by operating on a summary of the data rather than
the entire set. The challenge is selecting a small subset that “looks like” the full data in terms of distribution
or geometric properties.

Several strategies can be employed to choose representative points. In this report, we compare three
different greedy sample-reduction strategies for capturing the structure of a high-dimensional point set: (1)
a method that iteratively minimizes the Kullback-Leibler (KL) divergence between the full set and the
selected subset (with implementations in both 2D and 3D), (2) a projection-based method that balances
mean and variance along random directions (implemented for 2D), and (3) a baseline geometric method
that preserves distances to random hyperplanes (implemented for 2D). We describe the algorithms in detail
and provide pseudocode for the first two approaches. We then present a comparative evaluation using both
qualitative visualizations and quantitative error metrics (projection error and KL divergence) to highlight
the strengths and trade-offs of each method.

2 KL-Divergence-Based Greedy Selection

One principled way to measure how well a subset X of points represents a full set Y is to treat each set as
defining a probability distribution over space (for example, an empirical distribution or a density estimate)
and then compute the Kullback-Leibler (KL) divergence between these distributions. The KL divergence
D1, (P||Q) from distribution P to distribution @ is given by:

P(x)
Q(x)
for continuous densities (or Dk (P[|Q) = >, pilog £+ for discrete distributions). In our context, P can be
thought of as the distribution of the full set ¥ and @ as that of the subsample X. Intuitively, Dy, (P||Q)
measures the information lost when @ (the subset’s distribution) is used to approximate P (the full set’s
distribution). A smaller KL divergence means the subset X is a better stand-in for Y.

The KL-divergence-based greedy selection method starts with an empty subset and iteratively adds
points from Y to X such that each addition yields the greatest reduction in Dk, (Py||Px). Initially, Px
(with X empty or very small) is a poor approximation of Py; as more points are added, Px should become
a closer approximation and the KL divergence decreases. To implement this, we need a way to estimate
the distributions Py and Px at each step. One approach is to use a discretization of the space into bins (a
histogram) or a kernel density estimate. At each iteration, we evaluate which candidate point, if added to
X, would most decrease the divergence Dkr(Py ||Pxu{p}). That point is then selected into X.

Pseudocode for the KL-based greedy subsampling algorithm is given in Algorithm 1. Here P(Y) and
P(X) denote the current probability distributions (or frequency histograms) associated with the full set and
subset, respectively.

D1, (P||Q) = /P(x) log dx, (1)



Algorithm 1 Greedy KL-Divergence Subsample Selection

1: Input: Full point set Y, target subset size k.
2: Initialize subset X « ().

3: for i =1%o k do

4:  best_point < None, best_KL <« oco.

5.  for each pin Y\ X do

6: Compute D = Dk, (P(Y) || P(X U{p})).
7 if D < best_KL then

8: best KL < D; best_point < p.

9: end if

10:  end for

11: X < X U {best_point}.

12: end for

13: Output: Representative subset X.

This greedy procedure is computationally intensive for large Y (each iteration scans all remaining points to
evaluate the KL divergence). However, it often yields a subset that very closely approximates the distribution
of Y. In practice, one can limit the resolution of the distribution estimate or use approximate updates to
make this feasible. We implemented this method for both 2D and 3D point sets (in scripts 2d-KL.py and
3d-KL.py), using a fixed grid to estimate Py and Px at each step. In the 3D case, the concepts are identical,
but estimating P(Y') and P(X) requires a 3D grid or kernel, which increases computational cost. The result
is a set X that minimizes the information loss (KL divergence) relative to Y by greedily covering regions of
space in proportion to how much probability mass Y has in those regions.

3 Projection Mean-Variance Tradeoff Method

Another strategy for representative selection is to ensure that the subset X matches certain summary statis-
tics of the full set Y. In high dimensions, directly matching the full covariance structure of Y is complex.
Instead, the projection-based mean-variance method uses random one-dimensional projections to capture
the distribution’s characteristics. The idea is to preserve, for a set of randomly chosen directions, both the
mean (first moment) and the spread (second moment, or variance) of the data when projected onto those
directions.
Concretely, suppose we draw m random unit vectors {uy,ua, ..., u,} in the plane (for 2D, these could
be random angles) or in higher dimensions (random directions on the unit sphere). For each direction wu;,
€)) (9)

we can compute the mean sy’ and standard deviation oy’ of the projections of all points in ¥ onto u;. We

would like our subset X to have similar statistics: i.e., for each j, the mean u(J ) and standard deviation Jg)

(computed over points in X projected onto u;) should be as close as possible to those of the full set.

There is often a trade-off between matching the mean and matching the variance (spread) along any
given direction, especially if the distribution of Y is not uniform. For example, picking too many extreme
outlier points can quickly match the range or variance of Y, but may shift the subset’s mean away from the
true center of Y'; conversely, picking points near the center will align the means but reduce the variance of X
relative to Y. The greedy algorithm for the mean-variance method balances these by explicitly considering
both in its selection criterion. We define an error metric that quantifies the discrepancy in mean and variance

along the set of projection directions U = {u1,...,u;}. One such error function can be written as:
1 o
X)= =3 [ = u$)? + A - 09)]. (2)
j=1

where X is a weighting factor that can be tuned to give more or less emphasis to matching the variance
relative to the mean. In our implementation (2d-mean-var.py), we took A = 1 for simplicity, weighing
mean and variance equally.



The greedy selection procedure starts with X empty and adds one point at a time from Y that most
reduces the error E(X). After each point is added, the means and variances ,ugz—), Ugg) are recomputed for
the new subset before the next selection. Pseudocode for this approach is provided in Algorithm 2.

Algorithm 2 Greedy Projection Mean-Variance Subsampling

1: Input: Full set Y, target size k, random directions U = {1, ..., U, }-
2: Compute ,ugﬁ), Ugf) for all j = 1..m (full data stats).

3: Initialize X < 0.

4: for i =1to k do

5:  best_point < None; best_err + co.

6: for each pin Y \ X do

7: X' =X U{p}.

s Compute E(p) = & 3770, (15 — u¥)? + Aoy — o).
9: if F(p) < best_err then

10: best_err < E(p); best_point <+ p.

11: end if

12:  end for

13: X < X U {best_point}.

14: end for

15: Output: Representative subset X.

In this approach, the random projection directions serve as a proxy for overall shape. By using multiple
random projections, we capture different aspects of the distribution of Y without needing to consider the
full high-dimensional geometry directly. This makes the method scalable: one can choose m (the number
of projections) to balance accuracy and computational cost. In practice, even a modest number of random
directions (e.g. m = 10 or 20) can yield a good approximation of the data’s spread in various orientations.
The chosen subset X will tend to include both central points (to keep the projected means aligned with
Y) and some peripheral points (to account for the variance along those projections). Thus, it inherently
balances bias (mean alignment) and variance (coverage of spread) in multiple directions.

4 Baseline Geometric Method (Hyperplane Distance Preserva-
tion)

As a baseline, we also consider a simpler geometric selection strategy. This method aims to preserve the
range or extent of the point set Y along various directions, without explicitly accounting for distribution or
statistical moments. In 2D, a convenient way to do this is by using random hyperplanes (which in 2D are
random lines through the origin) and ensuring that, for each such line, the subset X has a point that lies as
far out along that line as the farthest point in Y. In other words, X should approximate the convex hull of
Y by capturing extreme points.

One implementation is as follows: sample a set of k random unit direction vectors {vy,va, ..., v} in 2D.
For each direction v;, find the point p; € Y that maximizes the signed distance v; - p (i.e. the projection
of p onto v;). Include each such p; in the subset X. (If the same point ends up selected by multiple
directions, it need only be included once.) This yields up to k points that cover the extremes of Y in those
sampled directions. We used a variant of this idea in 2d.py. To make sure both sides of each hyperplane are
considered, one can also sample v; and —wv; pairs or sample more directions and then take the top k extreme
points overall.

This baseline does not attempt to match the overall distribution of points; rather, it focuses on the
geometric boundary. It will ensure that the subset spans a similar bounding box or convex shape as Y, but
it may under-sample dense interior regions (since no explicit effort is made to pick points from high-density
areas). The baseline is computationally cheap (linear in |Y| for a given set of directions) and provides a
point of comparison for the more sophisticated strategies above.



5 Results and Comparison

We evaluated the above methods on sample 2D and 3D point sets. Figure 1 and Figure 2 visualize the
selected representative subsets (in red) against the full original point sets (in blue) for the 2D and 3D cases,
respectively. In these examples, the subset size k was chosen to be significantly smaller than |Y| (for instance,
15 representative points out of 100 original points).

Figure 1 shows the result of applying the projection-based mean-variance method on a 2D data set. We
can see that the red points (selected subset) are spread across the space, covering the overall span of the
blue points and also clustering around the central region. This reflects the algorithm’s attempt to maintain
both the center (mean) and the spread (variance) of the original data. In contrast, if we apply the baseline
method on the same data, it would pick points more strictly at the extremes of the distribution (corners or
outer boundary), missing some of the interior points that the mean-variance method included. Meanwhile,
the KL-based method on this 2D data would tend to pick more points in denser regions to faithfully represent
the data distribution; qualitatively, its selected points would coincide with areas where blue points are more
concentrated, ensuring the subset’s empirical density matches the original.

In the 3D case (Figure 2), we show the outcome of the KL-divergence minimization approach. The red
points (subset X) in the figure are distributed throughout the volume of the blue points (full set V). We
observe that the greedy KL method places multiple representative points in regions where the density of
Y is high (clusters of blue points), while still covering the overall range of Y. This is consistent with the
goal of minimizing KL divergence: the subset allocates its limited points in a way that approximates the
full distribution’s density as closely as possible. A method focusing purely on variance might have placed
relatively more points at the extremes of the cloud, whereas the KL-driven subset ensures that dense interior
clusters are well-represented.

Quantitatively, the benefits of each approach can be measured by their respective criteria. The projection
error E(X) (based on mean and variance differences) for the mean-variance method is typically lower than
that for the KL-based method or the baseline, since the mean-variance greedy algorithm is directly optimizing
that metric. In our 2D experiments, after selecting around 15 points out of 100, the mean-variance method
achieved an F(X) value near zero (indicating almost perfect alignment of projected means and variances
with the full set), whereas the KL-based subset had a slightly higher E(X) (it preserved distribution but not
perfectly the variance in some random projections). The baseline subset had the highest projection error,
as expected, because it often failed to pick points representing the central mass of the distribution, causing
a bias in projected means.

On the other hand, when comparing the KL divergence Dkr,(Py || Px) between the full set Y and the
subset X, the KL-based method unsurprisingly excels. For the 3D data example, adding points via the KL
greedy strategy drove the divergence down significantly faster than the other methods. After selecting a
subset of moderate size, the KL divergence for the KL-based method was substantially lower (better by tens
of percent) than that of a subset of equal size chosen by the mean-variance method. The baseline method
fared the worst in terms of KL divergence, since it does not actively try to match the distribution; its subset
often under-represents dense regions, leading to a larger information loss relative to Y.

It is worth noting that while each greedy approach focuses on a different objective, they all gradually
improve the representation of the data as more points are added. Early in the selection (when X is very
small), all methods might choose points that are intuitively “important” — for example, an extreme point
and a central point — because those help both distribution and spread. However, as X grows, the differences
become more pronounced: the KL method will continue to fill in dense areas, the mean-variance method will
try to cover directions that still have mismatch in mean or variance, and the baseline will continue picking
outer points. The choice of method should thus be informed by what aspect of the data one wishes to preserve:
overall distribution (KL), multi-directional spread (mean-variance), or just broad extent (baseline).

6 Conclusion

We presented and compared three greedy algorithms for selecting a representative subsample from a high-
dimensional point set. The KL-divergence minimization approach aims to preserve the full data distribution
as closely as possible, making it powerful when capturing density information is paramount. The projection-
based mean-variance method focuses on aligning key statistical properties (mean and variance) across multi-
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Figure 1: Representative sampling in 2D: The original points (blue) and the selected subset (red) obtained
using the projection-based mean-variance method. The subset of red points maintains the overall coverage
and central location of the full data.

ple directions, which is effective for preserving the shape and spread of the data. The simple baseline method
of picking extreme points via random hyperplanes provides a useful reference, highlighting the importance
of covering interior points in addition to boundary points.

Our experiments in 2D and 3D demonstrate that the more advanced methods (KL and mean-variance)
indeed offer superior preservation of data characteristics, each excelling in the metrics they optimize. In
practice, the choice between these approaches may be guided by specific needs: if one requires a subset that
can stand in for the original distribution in analyses or modeling, the KL-based selection is appropriate;
if one cares about capturing the range of variation and principal structure of the data, the mean-variance
method is a strong choice. Future work could explore optimizing these methods further (for example, using
smarter search to reduce computational cost) or combining criteria to achieve both low KL divergence and
low projection error with a single selection strategy.
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Figure 2: Representative sampling in 3D: The full point set Y (blue) and the greedy KL-divergence-based
subsample X (red). The subset captures high-density regions of Y while still covering the full extent of the
data.



